Purpurin Suppresses Candida albicans Biofilm Formation and Hyphal Development
نویسندگان
چکیده
A striking and clinically relevant virulence trait of the human fungal pathogen Candida albicans is its ability to grow and switch reversibly among different morphological forms. Inhibition of yeast-to-hypha transition in C. albicans represents a new paradigm for antifungal intervention. We have previously demonstrated the novel antifungal activity of purpurin against Candida fungi. In this study, we extended our investigation by examining the in vitro effect of purpurin on C. albicans morphogenesis and biofilms. The susceptibility of C. albicans biofilms to purpurin was examined quantitatively by 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide reduction assay. Hyphal formation and biofilm ultrastructure were examined qualitatively by scanning electron microscopy (SEM). Quantitative reverse transcription-PCR (qRT-PCR) was used to evaluate the expression of hypha-specific genes and hyphal regulator in purpurin-treated fungal cells. The results showed that, at sub-lethal concentration (3 µg/ml), purpurin blocked the yeast-to-hypha transition under hypha-inducing conditions. Purpurin also inhibited C. albicans biofilm formation and reduced the metabolic activity of mature biofilms in a concentration-dependent manner. SEM images showed that purpurin-treated C. albicans biofilms were scanty and exclusively consisted of aggregates of blastospores. qRT-PCR analyses indicated that purpurin downregulated the expression of hypha-specific genes (ALS3, ECE1, HWP1, HYR1) and the hyphal regulator RAS1. The data strongly suggested that purpurin suppressed C. albicans morphogenesis and caused distorted biofilm formation. By virtue of the ability to block these two virulence traits in C. albicans, purpurin may represent a potential candidate that deserves further investigations in the development of antifungal strategies against this notorious human fungal pathogen in vivo.
منابع مشابه
Effects of Magnolol and Honokiol on Adhesion, Yeast-Hyphal Transition, and Formation of Biofilm by Candida albicans
BACKGROUND The first step in infection by Candida albicans is adhesion to host cells or implanted medical devices and this followed by hyphal growth and biofilm formation. Yeast-to-hyphal transition has long been identified as a key factor in fungal virulence. Following biofilm formation, C. albicans is usually less sensitive or insensitive to antifungals. Therefore, development of new antifung...
متن کاملAlizarin and Chrysazin Inhibit Biofilm and Hyphal Formation by Candida albicans
Candida albicans is one of the most common pathogen causes fungal infections. This opportunistic pathogen can form biofilms comprised of yeast, hyphae and pseudo hyphal elements, and the hyphal form C. albicans considered as probable virulence factor. We investigated the antibiofilm activities of 13 quinones and anthraquinones related compounds against C. albicans biofilms by using crystal viol...
متن کاملStreptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication.
The fungus Candida albicans colonizes human oral cavity surfaces in conjunction with a complex microflora. C. albicans SC5314 formed biofilms on saliva-coated surfaces that in early stages of development consisted of approximately 30% hyphal forms. In mixed biofilms with the oral bacterium Streptococcus gordonii DL1, hyphal development by C. albicans was enhanced so that biofilms consisted of a...
متن کاملO-Mannosylation in Candida albicans Enables Development of Interkingdom Biofilm Communities
Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of ...
متن کاملRegulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p
The impact of many microorganisms on their environment depends upon their ability to form surface bound communities called biofilms [1]. Biofilm formation on implanted medical devices has severe consequences for human health by providing both a portal of entry and a sanctuary for invasive bacterial and fungal pathogens [1 and 2]. Biofilm regulators and adherence molecules are extensively define...
متن کامل